当前位置:网站首页>Distribution rules of weights of binary neural networks
Distribution rules of weights of binary neural networks
2022-07-21 01:33:00 【Black elm】
In the previous experiments, the rules of weight distribution of binary neural network are obtained :
Distribute by column ,
Positive and negative symmetry ,
A0 Column or B0 The column height is prominent , And A0 Column or B0 The positive and negative relationships between columns are opposite
coincidence 1 The height of the column is small , And the positive and negative relationship is A0 Column or B0 The column is opposite
coincidence 0 The column does not change
A0 Column ,B0 Column , coincidence 1 Column , coincidence 0 The columns are almost consistent with each other .
Test this rule this time
(A,B)---9*9*2---(1,0)(0,1)
Classify with neural network A and B,A Yes 6 individual 1,B Yes 5 individual 1. Export convergence weights , Observe the relationship between training set and weight .
for the first time
0 | 1 | 1 | 1 | 0 | 0 | ||
1 | 0 | 1 | 1 | 0 | 0 | ||
0 | 1 | 1 | 1 | 1 | 1 | ||
651 | |||||||
f2[0] | f2[1] | The number of iterations n | Average accuracy p-ave | 1-0 | 0-1 | δ | Time consuming ms/ Time |
0.9999 | 9.97E-05 | 99203 | 1 | 1 | 1 | 1.00E-04 | 463 |
convergence w1
0.774997 | -0.65415 | -0.78115 | 0.150843 | -0.02 | -0.78115 | 0.724997 | 0.108843 | 0.059843 |
1.356908 | -1.15298 | -1.12498 | 0.065926 | 0.031 | -1.11298 | 1.308908 | 0.144926 | 0.129926 |
-0.94088 | 0.810673 | 0.931673 | -0.06521 | -0.072 | 0.865673 | -0.85388 | -0.14421 | -0.17021 |
1.324386 | -1.1468 | -1.2338 | 0.160588 | 0.075 | -1.1368 | 1.380386 | 0.170588 | 0.053588 |
-1.19042 | 1.031865 | 1.037865 | -0.22556 | -0.008 | 1.071865 | -1.07742 | -0.12056 | -0.06656 |
1.484961 | -1.29585 | -1.30385 | 0.175112 | -0.07 | -1.19685 | 1.375961 | 0.161112 | 0.110112 |
-1.47581 | 1.360955 | 1.360955 | -0.11686 | -0.06 | 1.318955 | -1.53981 | -0.20786 | -0.16586 |
-1.1494 | 1.052707 | 0.895707 | -0.04069 | 0.017 | 0.939707 | -1.0364 | -0.17369 | -0.11369 |
-0.67912 | 0.587344 | 0.555344 | -0.07177 | 0.087 | 0.587344 | -0.58012 | -0.04777 | -0.10177 |
Draw a picture
Focus on training
A0 As a x=0,6
B0 As a x=1,2,5,
AB Coincident 1 Column x=3,7,8
AB Coincident 0 Column x=4
It is obvious that , The first 1,2,5 The column distribution is consistent , The first 0,6 The column distribution pattern is consistent , And with the third 1,2,5 The positive and negative of the column are opposite . The first 3,7,8 The columns are distributed uniformly , And with the third 1,2,5 The column distribution is positive and negative .
The initialization weight of this network w1 export
-0.02 | 0.049 | -0.078 | 0.059 | -0.02 | -0.078 | -0.07 | 0.017 | -0.032 |
0.067 | 0.001 | 0.029 | -0.07 | 0.031 | 0.041 | 0.019 | 0.009 | -0.006 |
-0.014 | -0.034 | 0.087 | 0.017 | -0.072 | 0.021 | 0.073 | -0.062 | -0.088 |
0.029 | 0.021 | -0.066 | 0.033 | 0.075 | 0.031 | 0.085 | 0.043 | -0.074 |
-0.07 | 0.053 | 0.059 | -0.084 | -0.008 | 0.093 | 0.043 | 0.021 | 0.075 |
0.095 | -0.038 | -0.046 | 0.043 | -0.07 | 0.061 | -0.014 | 0.029 | -0.022 |
-0.032 | 0.061 | 0.061 | 0.027 | -0.06 | 0.019 | -0.096 | -0.064 | -0.022 |
-0.088 | 0.069 | -0.088 | 0.037 | 0.017 | -0.044 | 0.025 | -0.096 | -0.036 |
-0.038 | -0.028 | -0.06 | -0.046 | 0.087 | -0.028 | 0.061 | -0.022 | -0.076 |
convergence w1 | initial w1 |
-0.02 | -0.02 |
0.031 | 0.031 |
-0.072 | -0.072 |
0.075 | 0.075 |
-0.008 | -0.008 |
-0.07 | -0.07 |
-0.06 | -0.06 |
0.017 | 0.017 |
0.087 | 0.087 |
Compare initial weights w1 And convergence weight w1 Of the 4 Column , They are consistent . therefore AB Coincident 0 Column weights do not change , This is consistent with the rules .
Do the second group
0 | 1 | 1 | 1 | 0 | 0 | |||
1 | 0 | 1 | 1 | 0 | 0 | |||
0 | 1 | 1 | 1 | 1 | 1 | |||
651 | ||||||||
f2[0] | f2[1] | The number of iterations n | Average accuracy p-ave | 1-0 | 0-1 | δ | Time consuming ms/ Time | |
6512 | 1.00E-04 | 0.9999 | 93878 | 1 | 1 | 1 | 1.00E-04 | 517 |
The initialization of the w1
0.047 | -0.036 | -0.092 | -0.016 | -0.012 | 0.039 | -0.066 | -0.066 | 0.031 |
-0.05 | -0.056 | -0.072 | 0.051 | -0.03 | -0.016 | 0.023 | -0.098 | -0.066 |
0.061 | -0.002 | -0.074 | 0.025 | -0.098 | -0.064 | 0.041 | -0.094 | -0.026 |
-0.044 | 0.077 | -0.07 | 0.001 | 0.039 | -0.056 | -0.012 | 0.031 | -0.018 |
0.059 | -0.014 | -0.098 | -0.078 | 0.077 | -0.024 | 0.057 | 0.031 | 0.017 |
-0.074 | -0.058 | -0.018 | -0.072 | 0.031 | -0.076 | 0.093 | 0.069 | 0.075 |
-0.062 | -0.052 | -0.076 | 0.087 | 0.003 | 0.023 | -0.052 | 0.047 | -0.058 |
0.091 | -0.052 | -0.068 | -0.052 | -0.072 | -0.016 | -0.06 | 0.017 | -0.026 |
0.029 | 0.053 | 0.019 | 0.073 | 0.071 | 0.005 | -0.02 | 0.059 | 0.013 |
Convergent w1
-0.94617 | 0.937458 | 0.881458 | -0.03572 | -0.012 | 1.012458 | -1.05917 | -0.08572 | 0.011285 |
1.358468 | -1.31938 | -1.33538 | 0.196092 | -0.03 | -1.27938 | 1.431468 | 0.047092 | 0.079092 |
0.993965 | -0.87332 | -0.94532 | 0.086642 | -0.098 | -0.93532 | 0.973965 | -0.03236 | 0.035642 |
-1.489 | 1.425586 | 1.278586 | -0.09542 | 0.039 | 1.292586 | -1.457 | -0.06542 | -0.11442 |
1.092514 | -0.98676 | -1.07076 | -0.01725 | 0.077 | -0.99676 | 1.090514 | 0.091749 | 0.077749 |
1.08318 | -1.14758 | -1.10758 | -0.0044 | 0.031 | -1.16558 | 1.25018 | 0.136599 | 0.142599 |
-0.06481 | -0.03012 | -0.05412 | 0.106071 | 0.003 | 0.044877 | -0.05481 | 0.066071 | -0.03893 |
1.04124 | -0.93883 | -0.95483 | 0.011414 | -0.072 | -0.90283 | 0.89024 | 0.080414 | 0.037414 |
-1.38556 | 1.325081 | 1.291081 | -0.06948 | 0.071 | 1.277081 | -1.43456 | -0.08348 | -0.12948 |
Will converge w1 Draw a picture
X=1,2,5 The column distribution corresponds to B0 Column ,x=0,6 The column distribution corresponds to A0 Column , And with the B0 The positive and negative relations of columns are opposite .
initial w1 | convergence w1 |
-0.012 | -0.012 |
-0.03 | -0.03 |
-0.098 | -0.098 |
0.039 | 0.039 |
0.077 | 0.077 |
0.031 | 0.031 |
0.003 | 0.003 |
-0.072 | -0.072 |
0.071 | 0.071 |
The two weights are 4 Column consistency , There is no change , accord with AB coincidence 0 Rules for columns . and x=3,7,8 The distribution is consistent , And with the B0 The positive and negative relationships of columns are opposite , Corresponding AB coincidence 1 Column .
According to the shift distance and assumption ,A0,B0 The column corresponds to the shift particle , Is active column , Therefore, the amplitude is large . and AB coincidence 1 Column , Is the destination column of the shift particle , Also passively participated in the shift , Therefore, there is movement but the amplitude is not obvious . and AB coincidence 0 Column neither corresponds to shift particle nor destination column , Therefore, he did not participate in the displacement movement , The amplitude is 0 There is no change .
Therefore, the experiment shows that the weight convergence form can be constructed from the training set based on several clear rules .
边栏推荐
- 2020年网络搭建与应用——国赛samba答案
- DNS resolution process
- 力扣第 302 场周赛复盘
- I want to display the number of records in the SQL database table on the label label
- 裕华万宝风扇安装顺序
- The development of the meta universe is also a process of gradually becoming people's production and lifestyle
- 数据库系统原理与应用教程(036)—— MySQL 的索引(二):创建索引
- Iptables prevent nmap port scanning
- HW2021攻防演练经历碎碎念-见解
- Network security comprehensive penetration test cve-2010-2883-pdf vulnerability analysis
猜你喜欢
W806开发板体验
腾讯民汉翻译 小程序 改接口版(研究中)
网络安全—综合渗透测试-CVE-2018-10933-libssh漏洞分析
Visio使用
技术分析 PREMINT 安全事件,如何避免攻击?
Kubernetes Kube scheduler
Blurred photos, second high-definition big picture, flying propeller ppde takes you to reproduce the image restoration model cmfnet
Learn about spark project on nebulagraph
Network security in Secondary Vocational Schools - the thinking of reverse PE reverse problem solving in 2022 National Games
网络安全—综合渗透测试-CVE-2010-2883-PDF漏洞分析
随机推荐
二值化神经网络权重的分布规则
Tutorial on principles and applications of database systems (029) -- data integrity of MySQL (II): defining primary keys
技术分析 PREMINT 安全事件,如何避免攻击?
Unity-word文档点击按钮下载
infraversion和superaversion
Harbor - image warehouse
Difficulties and solutions of project management in complete electrical equipment manufacturing enterprises
网络安全—综合渗透测试-CVE-2018-10933-libssh维持访问
网络安全—综合渗透测试-CVE-2019-15107-Webmin远程代码执行
2022年度杭州未来科技城数字经济人才编程大赛02.黑白棋游戏_____滑动窗口
百度飞桨EasyDL助力制造企业智能化转型
Unity:测试旋转 函数
网络安全—综合渗透测试-CVE-2017-12629-Apache Solr远程代码执行
中职网络安全技能大赛P100-Dcore(轻型CMS系统)SQL注入
Network security comprehensive penetration test cve-2019-7238-nexus remote code execution
Unity:PC开发,鼠标点击物体触发物体更换材质
力扣刷题238.除自身以外数组的乘积
Tutorial on the principle and application of database system (024) -- MySQL modifying the structure of data tables
网络安全—综合渗透测试-CVE-2018-10933-libssh漏洞分析
Leetcode exercises grammar supplementary summary notes