当前位置:网站首页>百度飞桨EasyDL助力制造企业智能化转型
百度飞桨EasyDL助力制造企业智能化转型
2022-07-20 01:39:00 【飞桨PaddlePaddle】
工业质检领域的AI应用
制造业离不开质检。我们目之所及的产品,都是经过工业质检环节才顺利出厂。

质检由于精细度要求高,占到工厂总人力成本的40%。举例来说,工业质检中的轴承瑕疵检测目标,可能是个小划痕,也可能是小缺口。这种情况下,瑕疵视觉感官并不直观。在整个人力检测过程中,耗时多、人力投入高。而质检效率直接影响到企业生产以及交付效率。因此,工业质检的智能化赋能已经成为节省成本,提高产能的必然趋势。
工业质检方向,经历三个过程的演变:

那么,有没有一个简单上手同时确保高效质检的方法呢?
汽车零部件AI质检痛难点
本期案例企业来自于工业轴承质检方向的解决方案提供商——韦士肯,在轴承质检方向有很深的业务场景及技术积累;但在AI算法领域,缺少足够深的技术沉淀。在智能化赋能过程中,企业遇到的缺陷检测问题,主要包括内部材质检测、尺寸/形位检测及外观缺陷检测。

- 内部材质检测:包括材料成分、气孔及硬度检测,当前主要用到的技术是EM电磁技术及超声波技术做相关检测;
- 尺寸/形位检测:如检测轴承的直径、高度以及壁厚是否达到要求,当前是通过3D激光以及微磁场技术做检测;
- 外观缺陷检测:包括表面的划痕、磕碰、内部的锈迹。传统的机器视觉暂时无法解决相对不规则的问题,包括缺陷的定位,通常都是依赖人工检测。
该企业前期也尝试过组建算法团队做AI开发,解决检测智能化问题,但组建算法团队所需的算法人员、投入研究过程的时间成本、AI训练需要投入的服务器等机器成本累加起来,预估达到百万级。该企业的核心诉求是希望能够降低前期探索阶段的投入,利用AI赋能外观缺陷检测场景,从而提高整体质检环节的效率,以上是该企业用户的需求背景。
作为一家深耕轴承质检多年的解决方案提供商,他们在智能化转型的过程中遇到了以下主要问题:
首先,如何降低业务探索阶段的成本投入?
第二,如何对瑕疵缺陷做到精确的标注,从而提供高质量的训练数据?
第三,如何收集到各种瑕疵缺陷的数据,弥补缺陷样本少的痛点?
第四,如何适配各种硬件,简单高效完成部署工作?如何保证预测效率? 那么该企业用户是如何通过飞桨EasyDL逐一解决问题,并获得高收益的呢?
基于飞桨EasyDL打造的成品轴承视觉检测解决方案
首先,针对汽车轴承的缺陷进行分析,从而初步确定需要应用飞桨EasyDL哪一类模型。


模型训练
部分瑕疵缺陷的样本量少,如何提升数据利用率?借由飞桨EasyDL的数据增强功能,可将一张图片衍生多张图片,提高数据利用率。同时,通过自动超参搜索策略,完成相对复杂场景数据训练的利用率,同时可以产出基于这个场景最优的参数组合,达到更高的模型精度。如果目标检测物过小,可以选择小目标检测算法。该企业在该场景中,选择800张缺陷图片,无代码训练出精确率达90%的可用模型。
模型部署
企业遇到的问题是整体预测时延会直接影响到质检效率。使用EasyDL提供的模型加速功能,在精度无损的情况下压缩模型体积,降低预测时延。该企业将模型压缩后部署在T4服务器上,单图片预测可在100ms内完成。
同时,飞桨EasyDL产出的模型硬件适配广泛,通过平台一键导出适配主流硬件的SDK包完成模型部署。对于企业来说,不需要再去额外做硬件工作的适配,大幅节省了工作成本。
最终,该企业打造了基于飞桨EasyDL的成品轴承视觉检测解决方案。基于飞桨EasyDL机器学习检测算法,使用工业相机对产线上的轴承进行图片拍摄,通过传感器获取轴承的几何参数绘制成图像,生产现场的服务器进行图像分类和检测,判断轴承的外观质量是否符合要求,可检测轴承的擦伤、磕碰伤、磨伤、削料、锈蚀等瑕疵。

边栏推荐
猜你喜欢
The way to practice and play strange: the meaning of NPM global installation and local installation in nodejs, and the difference between global installation and local installation in NPM
股票问题一网打尽
[model evaluation]
Excellent disaster recovery solutions in 2022
Build product array
想低成本保障軟件安全?五大安全任務值得考慮
Select sort / insert sort / bubble sort
LeetCode_78_子集
Qt:Could not find qmake spec ‘default’.Error while parsing file xxx.pro. Giving up
QT_qss文件简易使用教程
随机推荐
开发测试平台难吗?
IDEA:Lambda expression are not supported at language level ‘5‘
SQL 注入攻击风险
jmeter 连接ORACLE数据库
程序环境和预处理详解
Classes et objets (en haut)
tkinter各种控件库控件创建速度比较
How to transfer a single node of the warehouse database to a cluster
redisconnectionfactory could not autowired
QT web development - Notes - 2
盘点优秀tkinter开源贡献者【pypi】
Frontier and application of data security technology from the perspective of compliance
Excellent disaster recovery solutions in 2022
DNS domain name resolution
ORA-39194: Table mode jobs require the tables to be comma separated.
[probability and count]
机械制造企业,如何借助ERP系统解决仓库管理难题?
Survey of network intrusion detection based on deep learning
选择排序/插入排序/冒泡排序
Translate official UE documents about uobject Foundation