当前位置:网站首页>Markdown syntax - mathematical expressions
Markdown syntax - mathematical expressions
2022-07-21 12:45:00 【Sunshing15】
List of articles
Mathematical expressions are related
vector , matrix , determinant
Use MathJax Rendering LaTex The mathematical formula , See math.stackexchange.com, stay Markdown To input mathematical formulas in LaTeX Grammar support . Reference link
vector
- Make letters bold in vector form
\pmb{x}
. Like a vector x x x Written as$\pmb{x}$
, Is shown as x \pmb{x} xx - Add arrows to letters in vector form
\vec{x}
, Is shown as x ⃗ \vec{x} x; Or write it as\overrightarrow{x}
, Is shown as x → \overrightarrow{x} x( Not recommended )
matrix
Use \begin{matrix} --- \end{matrix|
, The dotted line part writes specific matrix elements , Among the elements of the same line &
Separate , Use a backslash at the end of each line \\
separate , There is no need to use a backslash on the last line \\
Common grammar
- If the element needs to use
parentheses
The parcel , Willmatrix
Replace withpmatrix
. Such as ```
$$\begin{pmatrix}
1&1&1\\
1&1&1\\
1&1&1
\end{pmatrix}$$
Is shown as
( 1 1 1 1 1 1 1 1 1 ) \begin{pmatrix}1&1&1\\1&1&1\\1&1&1\end{pmatrix} ⎝⎛111111111⎠⎞
- If the element needs to use
brackets
The parcel , Willmatrix
Replace withbmatrix
.
$$\begin{bmatrix}
1&1&1\\
1&1&1\\
1&1&1
\end{bmatrix}$$
[ 1 1 1 1 1 1 1 1 1 ] \begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix} ⎣⎡111111111⎦⎤
Don't use grammar
- If the element needs to use
Curly braces
The parcel , Willmatrix
Replace withBmatrix
. - If the element needs to use
Single vertical line
The parcel , Willmatrix
Replace withvmatrix
. - If the element needs to use
Double vertical line
The parcel , Willmatrix
Replace withVmatrix
.
------- Curly braces ----------
$$\begin{Bmatrix}
1&1\\
1&1
\end{Bmatrix}$$
------- Single vertical line ---------- It doesn't seem to apply to multiple lines
$$\begin{vmatrix}
1&1
\end{vmatrix}$$
------- Double vertical line ---------- It doesn't seem to apply to multiple lines
$$\begin{Vmatrix}
1&1
\end{Vmatrix}$$
They are displayed as
{ 1 1 1 1 } \begin{Bmatrix} 1&1\\ 1&1 \end{Bmatrix} { 1111}
∣ 1 1 ∣ \begin{vmatrix} 1&1 \end{vmatrix} ∣∣11∣∣
∥ 1 1 ∥ \begin{Vmatrix} 1&1 \end{Vmatrix} ∥∥11∥∥
determinant
With \begin{array}{ Alignment mode }---\end{array}
structure , The dotted line part is the specific determinant constituent elements , Between the elements &
separate , For each line \\
separate . Package symbol : The symbol on the left is \begin{array}
Write before \left Required symbols
; The symbol on the right is \end{array}
Post write \right Required symbols
. The alignment is centered with letters c
, Left justify with letters l
, Right justify with letters r
. Default ( The part of the dimension alignment is empty , The curly braces of the package alignment cannot be omitted ) Align for Center
Such as
$$
\left|
\begin{array}{ccc}
1 & 0 & 0 \\
-5 & 2 & 3\\
3 & 3 & 5
\end{array}
\right|
$$
Is shown as
∣ 1 0 0 − 5 2 3 3 3 5 ∣ \left| \begin{array}{ccc} 1 & 0 & 0 \\ -5 & 2 & 3\\ 3 & 3 & 5 \end{array} \right| ∣∣1−53023035∣∣
The effect of using a single vertical line matrix is as follows
∣ 1 0 0 − 5 2 3 3 3 5 ∣ \begin{vmatrix} 1 & 0 & 0 \\ -5 & 2 & 3\\ 3 & 3 & 5 \end{vmatrix} ∣∣1−53023035∣∣
array
The basic grammar of the same row column . No package symbol ( I.e. not required \left,\right Symbol ) The difference is that the array sometimes adds some horizontal lines (\hline
) A vertical bar ( Write in the alignment , Use the vertical line directly |
) Such as
$$
\begin{array}{c|cc}
1 & 0 & 0 \\
\hline
-5 & 2 & 3\\
3 & 3 & 5
\end{array}
$$
Is shown as :
1 0 0 − 5 2 3 3 3 5 \begin{array}{c|cc} 1 & 0 & 0 \\ \hline -5 & 2 & 3\\ 3 & 3 & 5 \end{array} 1−53023035
Ellipsis
Middle horizontal ellipsis :\cdots $\cdots$
Is shown as 1 , 2 , 3 , ⋯ , n 1,2,3,\cdots,n 1,2,3,⋯,n
Bottom horizontal ellipsis :\cdots $\ldots$
Is shown as 1 , 2 , 3 , … , n 1,2,3, \ldots,n 1,2,3,…,n
Put up the ellipsis :\vdots$\vdots$
Is shown as ⋮ \vdots ⋮
Oblique ellipsis :\ddots$\cdots$
Is shown as ⋱ \ddots ⋱
Norm and inner product
Use $\parallel x\parallel$
Is shown as
∥ x ∥ \parallel x\parallel ∥x∥
Use $\langle x,y \rangle$
Is shown as * x , y * \langle x,y\rangle *x,y*
Piecewise functions and equations
Use \begin{cases}----\end{cases}
Sentence structure , Each expression ends with \\
Such as
$$f(x)=\begin{cases}
1, x>0\\
0, x\leq0
\end{cases}$$
Is shown as :
f ( x ) = { 1 , x > 0 0 , x ≤ 0 f(x)=\begin{cases} 1, x>0\\ 0, x\leq0 \end{cases} f(x)={ 1,x>00,x≤0
$$\begin{cases}
a_{11}x_1+a_{12}x_2=3\\
a_{21}x_1+a_{22}x_2=4
\end{cases}$$
Is shown as :
{ a 11 x 1 + a 12 x 2 = 3 a 21 x 1 + a 22 x 2 = 4 \begin{cases} a_{11}x_1+a_{12}x_2=3\\ a_{21}x_1+a_{22}x_2=4\\ \end{cases} { a11x1+a12x2=3a21x1+a22x2=4
Binomial combination
${ The upper formula \choose The lower formula }$
. Example : from n n n Of the elements m m m Elements : ( n m ) {n\choose m} (mn)
Alphabetic font
- Hollowed out blackbody (Blackboard Bold):
$\mathbb{ Letter }$
, Such as$\mathbb{E}
, Is shown as E \mathbb{E} E - Printer Fonts (Typewriter):
$\mathtt{E}$
, Show E \mathtt{E} E - Sans serif body (Sans Serif):
$\mathsf{E}$
, Show E \mathsf{E} E - In black (boldface):
$\mathbf{E}$
, Is shown as E \mathbf{E} E - roman (roman):
$\mathrm{E}$
, Is shown as E \mathrm{E} E - Calligraphy (calligraphic ):
$\mathcal{E}$
, Is shown as E \mathcal{E} E - Handwriting (script) :
$\mathscr{E}$
, Is shown as E \mathscr{E} E - German Gothic (Fraktur):
$\mathfrak{E}$
, Is shown as E \mathfrak{E} E - Italics (italic):
$\mathit{E}$
, Is shown as E \mathit{E} E
Space
Space feature | Code statements | Visual display |
---|---|---|
No blank space normal | $ab$ | Is shown as a b ab ab |
Be close to | $a\!b$ | Is shown as a b a\! b ab |
Small space | $a~b$ | Is shown as a b a~b a b |
Small space | $a\,b$ | Is shown as a b a\,b ab |
Medium space | $a\;b$ | Is shown as a b a\;b ab |
Quad | $a\quad b$ | Is shown as a b a\quad b ab |
Octave | $a\qquad b$ | Is shown as a b a\qquad b ab |
Mathematical operations
arithmetic
- Addition and subtraction :
$x\pm y$
Is shown as : x ± y x\pm y x±y - Subtraction and addition operation :
$x\mp y$
Is shown as : x ∓ y x\mp y x∓y - Cross multiplication :
$x\times y$
Is shown as : x × y x\times y x×y - Dot multiplication :
$x\cdot y$
Is shown as : x ⋅ y x\cdot y x⋅y - Star multiplication :
$x\ast y$
Is shown as : x ∗ y x\ast y x∗y - Division operations :
$x\div y$
Is shown as : x ÷ y x\div y x÷y - Slash division :
$x/ y$
Is shown as : x / y x/y x/y - Fractional operation :
$x\over y$
or$\frac{x}{y}$
Is shown as : x y x\over y yx, x y \frac{x}{y} yx
Advanced Computing
- Average operation :
$\overline{ Arithmetic expression }$
Is shown as : Arithmetic expression ‾ \overline{ Arithmetic expression } Arithmetic expression - Open quadratic operation :
$\sqrt{ Arithmetic expression }$
Is shown as : Arithmetic expression \sqrt{ Arithmetic expression } Arithmetic expression - open n n n Secondary operation :
$\sqrt[n]{ Arithmetic expression }$
Is shown as : Arithmetic expression n \sqrt[n]{ Arithmetic expression } n Arithmetic expression - logarithmic :
$\log( Arithmetic expression )$
, Is shown as : log ( Arithmetic expression ) \log( Arithmetic expression ) log( Arithmetic expression ) - Limit operation :
$lim_{ The variable limit written in the lower part }^{ The variable limit written in the upper part }$
, Is shown as : l i m The variable limit written in the lower part The variable limit written in the upper part lim_{ The variable limit written in the lower part }^{ The variable limit written in the upper part } lim The variable limit written in the lower part The variable limit written in the upper part - Write the variable limit in the limit operation of positive up and positive down :
$\displaystyle_{ The variable limit written in the lower part }^{ The variable limit written in the upper part }$
, Such as$\displaystyle \lim_{x\to0}^{y\to\infty}$
Is shown as : lim x → 0 y → ∞ \displaystyle \lim_{x\to0}^{y\to\infty} x→0limy→∞ - Integral operations : ∫ The variable limit written in the lower part The variable limit written in the upper part expression d x \int_{ The variable limit written in the lower part }^{ The variable limit written in the upper part } expression dx ∫ The variable limit written in the lower part The variable limit written in the upper part expression dx, Such as
$\int_{x\to 0}^{\infty}xdx$
, Is shown as : ∫ x → 0 ∞ x d x \int_{x\to 0}^{\infty}xdx ∫x→0∞xdx - The integral operation of writing the limit of variable in positive up and down : stay
\int
Before to add\displaystyle
. Such as$\displaystyle \int_{x\to 0}^{\infty}xdx$
, Is shown as : ∫ x → 0 ∞ x d x \displaystyle \int_{x\to 0}^{\infty}xdx ∫x→0∞xdx - Summation : ∑ The variable limit written in the lower part The variable limit written in the upper part expression \sum_{ The variable limit written in the lower part }^{ The variable limit written in the upper part } expression ∑ The variable limit written in the lower part The variable limit written in the upper part expression , Such as
$\sum_{x=0}^{\infty}x$
, Is shown as : ∑ x = 0 ∞ x \sum_{x=0}^{\infty}x ∑x=0∞x - Write the variable limit in the sum operation of positive up and positive down : stay
\sum
Before to add\displaystyle
. Such as$\displaystyle \sum_{x=0}^{\infty}x$
, Is shown as : ∑ x = 0 ∞ x \displaystyle \sum_{x= 0}^{\infty}x x=0∑∞x - Summation of multiple variable conditions
$\sum_{ The upper formula \atop The lower formula }$
, Such as$\sum_{i=0\atop j=0}^{i=n\atop j=n}i+j$
∑ i = 0 j = 0 i = n j = n ( i + j ) \displaystyle\sum_{i=0\atop j=0}^{i=n\atop j=n}(i+j) j=0i=0∑j=ni=n(i+j) - differential
- Ordinary differential
- First order ordinary differential
$\mathrm{d}x$
Is shown as : d x \mathrm{d}x dx
Point differential ( derivative )$\dot x$
Is shown as : x ˙ \dot x x˙
- First order ordinary differential
- Second order ordinary differential
$\ddot x$
Is shown as : x ¨ \ddot x x¨
- Second order ordinary differential
- n n n Order ordinary differential
$x^{(n)}$
Is shown as : x ( n ) x^{(n)} x(n)
- n n n Order ordinary differential
- Partial differential
- First order partial differential
$\partialx$
Is shown as : ∂ x \partial x ∂x
- First order partial differential
- n n n Order partial differential
$\partial^nx$
Is shown as : ∂ n x \partial^nx ∂nx
- n n n Order partial differential
- gradient
$\nabla$
∇ \nabla ∇
- gradient
Logical symbols
- It's not equal to :
$\neq$
, ≠ \neq = - Greater than or equal to :
$\geq$
, ≥ \geq ≥ - Not greater than or equal to :
$\ngeq$
, ≱ \ngeq ≱;$\notgeq$
, ≱ \not\geq ≥ - Less than or equal to :
$\leq$
, ≤ \leq ≤ - Not less than or equal to :
$\nleq$
, ≰ \nleq ≰;$\notleq$
, ≰ \not\leq ≤ - About equal to :
$\approx$
≈ \approx ≈ - Constant is equal to :
$\equiv$
≡ \equiv ≡
Set operations
- It belongs to operations
$\in$
∈ \in ∈ - It's not an operation
$\notin$ or $\not\in
∉ \notin ∈/ - Subset operations
$\subset$
⊂ \subset ⊂;$\supset$
⊃ \supset ⊃ - Non subset operations
$\not\subset$
⊄ \not\subset ⊂;$\not\supset$
⊅ \not\supset ⊃ - Proper subset operation
$\subseteq$
⊆ \subseteq ⊆;$\supseteq$
⊇ \supseteq ⊇ - Non proper subset operations
$\subsetneq$
⊊ \subsetneq ⊊;$\supsetneq$
⊋ \supsetneq ⊋ - intersection
$\cap$
∩ \cap ∩ - Combine
$\cup$
∪ \cup ∪ - Difference set
$\setminus$
∖ \setminus ∖ - Same as or
$\bigodot$
⨀ \bigodot ⨀ - Tongyu
$\bigotimes$
⨂ \bigotimes ⨂ - An empty set
$\emptyset$
∅ \emptyset ∅
Special symbols
$\infty$
∞ \infty ∞$\hat{a}$
a ^ \hat{a} a^$\check{a}$
a ˇ \check{a} aˇ$\breve{a}$
a ˘ \breve{a} a˘$\tilde{a}$
a ~ \tilde{a} a~$\bar{a}$
a ˉ \bar{a} aˉ$\vec{a}$
a ⃗ \vec{a} a$\acute{a}$
a ˊ \acute{a} aˊ$\grave{a}$
a ˋ \grave{a} aˋ$\mathring{a}$
a ˚ \mathring{a} a˚$\uparrow$
↑ \uparrow ↑$\Uparrow$
⇑ \Uparrow ⇑$\downarrow$
↓ \downarrow ↓$\Downarrow$
⇓ \Downarrow ⇓$\leftarrow$
← \leftarrow ←$\Leftarrow$
⇐ \Leftarrow ⇐$\rightarrow$
→ \rightarrow →$\Rightarrow$
⇒ \Rightarrow ⇒
边栏推荐
猜你喜欢
How Jenkins sends email, advanced test hands-on to teach you
LeetCode 練習——劍指 Offer 66. 構建乘積數組
H5在线CAD后台读写CAD文件
go mod创建项目
你必须知道的4种 Redis 集群方案及优缺点对比
Combine pyqt5 to develop one click conversion software for office documents, and there is no need to open members to transfer files in the future
从云原生到智能化,深度解读行业首个「视频直播技术最佳实践图谱」
学习记录十六
SEO(Search Engine Optimization)搜索引擎优化
Filter analysis using fvtool
随机推荐
When does MySQL use table locks and row locks?
Some records of openvino installation
Regular expressions match all Chinese characters or characters with double quotation marks
数据库系统概论--分析题
Segment tree - interval modification tree
浅拷贝 深拷贝
MySQL 入门基础(A)
What is composition and what is its function
选择MONGODB 实例接入数据库方式,需要怎么做?
Leetcode 226. 翻转二叉树
2022年备战金九银十,Android从基础到架构进阶全方面面试题解析(含答案及源码)
Maixll-Dock 条形码识别
Overseas app push (Part 1): differences between manufacturer channel and Google FCM channel
Quantum Source:致力于抢先实现百万光量子比特
知识图谱 关系抽取有哪些方法
In 2022, prepare for the golden nine silver ten, Android from infrastructure to architecture advanced all-round interview question analysis (including the answer and source code)
In that year, the story behind the opening of wild cattle in the Spring Festival Gala
SEO(Search Engine Optimization)搜索引擎优化
Technology cloud report: cloud giant's midfield battle: PAAS and SaaS become key breaking points?
Record a tortuous record of taking the target