当前位置:网站首页>DeamNet|FileNotFoundError: [WinError 3] 系统找不到指定的路径。: ‘./Datasettest\\Set12‘
DeamNet|FileNotFoundError: [WinError 3] 系统找不到指定的路径。: ‘./Datasettest\\Set12‘
2022-07-20 11:20:00 【Claire_Shang】
D:\ProgramData\Anaconda3\envs\python36\python.exe "D:/Papers to read/2022.07/Adaptive Consistency Prior based Deep Network for Image_Denoising/DeamNet-main/DeamNet-main/train.py"
Traceback (most recent call last):
File "D:/Papers to read/2022.07/Adaptive Consistency Prior based Deep Network for Image_Denoising/DeamNet-main/DeamNet-main/train.py", line 148, in <module>
test_set = get_eval_set(os.path.join(opt.data_dir+'test', opt.test_dataset), opt.upscale_factor)
File "D:\Papers to read\2022.07\Adaptive Consistency Prior based Deep Network for Image_Denoising\DeamNet-main\DeamNet-main\data.py", line 19, in get_eval_set
transform=transform())
File "D:\Papers to read\2022.07\Adaptive Consistency Prior based Deep Network for Image_Denoising\DeamNet-main\DeamNet-main\dataset.py", line 116, in __init__
self.image_filenames = [join(lr_dir, x) for x in listdir(lr_dir) if is_image_file(x)]
FileNotFoundError: [WinError 3] 系统找不到指定的路径。: './Datasettest\\Set12'
Namespace(Ispretrained=True, Isreal=False, batchSize=8, data_augmentation=True, data_dir='./Dataset', gpus=1, hr_train_dataset='DIV2K_train_HR', lr=0.0001, model_type='Deam', nEpochs=2000, noiseL=25, patch_size=128, pretrained='./Deam_models', pretrained_sr='noise25.pth', save_folder='./checkpoint/', seed=123, start_iter=1, statistics='./statistics/', testBatchSize=1, test_dataset='Set12', threads=4, upscale_factor=1, val_noiseL=25)
===> Loading datasets
搜了好多,根据报错现实的命名空间来看,应该是data_dir的路径设置不对,找了好久终于找到定义data_dir路径的代码了
parser.add_argument('--data_dir', type=str, default='./Dataset', help='the dataset dir')
修改
parser.add_argument('--data_dir', type=str, default='D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/Dataset/test', help='the dataset dir')
也不对,报错
D:\ProgramData\Anaconda3\envs\python36\python.exe "D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/train.py"
Traceback (most recent call last):
File "D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/train.py", line 145, in <module>
opt.patch_size, opt.data_augmentation)
File "D:\Papers to read\2022.07\DeamNet-main\DeamNet-main\data.py", line 15, in get_training_set
transform=transform())
File "D:\Papers to read\2022.07\DeamNet-main\DeamNet-main\dataset.py", line 79, in __init__
self.image_filenames = [join(image_dir, x) for x in listdir(image_dir) if is_image_file(x)]
FileNotFoundError: [WinError 3] 系统找不到指定的路径。: 'D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/Dataset/test\\train\\DIV2K_train_HR'
Namespace(Ispretrained=True, Isreal=False, batchSize=8, data_augmentation=True, data_dir='D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/Dataset/test', gpus=1, hr_train_dataset='DIV2K_train_HR', lr=0.0001, model_type='Deam', nEpochs=2000, noiseL=25, patch_size=128, pretrained='./Deam_models', pretrained_sr='noise25.pth', save_folder='./checkpoint/', seed=123, start_iter=1, statistics='./statistics/', testBatchSize=1, test_dataset='Set12', threads=4, upscale_factor=1, val_noiseL=25)
===> Loading datasets
Process finished with exit code 1
看来路径写的还不对呀,结合上面的错误,Dataset里要有‘train’和'set'两个文件,于是把路径改到上一级
parser.add_argument('--data_dir', type=str, default='D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/Dataset', help='the dataset dir')
D:\ProgramData\Anaconda3\envs\python36\python.exe "D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/train.py"
Traceback (most recent call last):
File "D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/train.py", line 148, in <module>
test_set = get_eval_set(os.path.join(opt.data_dir+'test', opt.test_dataset), opt.upscale_factor)
File "D:\Papers to read\2022.07\DeamNet-main\DeamNet-main\data.py", line 19, in get_eval_set
transform=transform())
File "D:\Papers to read\2022.07\DeamNet-main\DeamNet-main\dataset.py", line 116, in __init__
self.image_filenames = [join(lr_dir, x) for x in listdir(lr_dir) if is_image_file(x)]
FileNotFoundError: [WinError 3] 系统找不到指定的路径。: 'D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/Datasettest\\Set12'
Namespace(Ispretrained=True, Isreal=False, batchSize=8, data_augmentation=True, data_dir='D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/Dataset', gpus=1, hr_train_dataset='DIV2K_train_HR', lr=0.0001, model_type='Deam', nEpochs=2000, noiseL=25, patch_size=128, pretrained='./Deam_models', pretrained_sr='noise25.pth', save_folder='./checkpoint/', seed=123, start_iter=1, statistics='./statistics/', testBatchSize=1, test_dataset='Set12', threads=4, upscale_factor=1, val_noiseL=25)
===> Loading datasets
Process finished with exit code 1
虽然回到原来的错误了,但是经过改动的这两下,我觉得应该是文件位置的问题,就是说Dataset里还要有‘Set12’这个文件,那就把这个文件移出来吧
Traceback (most recent call last):
File "D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/train.py", line 148, in <module>
test_set = get_eval_set(os.path.join(opt.data_dir+'test', opt.test_dataset), opt.upscale_factor)
File "D:\Papers to read\2022.07\DeamNet-main\DeamNet-main\data.py", line 19, in get_eval_set
transform=transform())
File "D:\Papers to read\2022.07\DeamNet-main\DeamNet-main\dataset.py", line 116, in __init__
self.image_filenames = [join(lr_dir, x) for x in listdir(lr_dir) if is_image_file(x)]
FileNotFoundError: [WinError 3] 系统找不到指定的路径。: 'D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/Datasettest\\Set12'
Process finished with exit code 1
好吧,还是不对,仔细检查,原代码中‘train’和‘test’的文件位置什么的都是一一对照的,那么代码中不一样的地方就是调用数据时的代码有所区别,把opt.data_dir+'test'改成opt.data_dir, 'test'就可以运行了
test_set = get_eval_set(os.path.join(opt.data_dir, 'test', opt.test_dataset), opt.upscale_factor)
:\ProgramData\Anaconda3\envs\python36\python.exe "D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/train.py"
Namespace(Ispretrained=True, Isreal=False, batchSize=8, data_augmentation=True, data_dir='D:/Papers to read/2022.07/DeamNet-main/DeamNet-main/Dataset', gpus=1, hr_train_dataset='DIV2K_train_HR', lr=0.0001, model_type='Deam', nEpochs=2000, noiseL=25, patch_size=128, pretrained='./Deam_models', pretrained_sr='noise25.pth', save_folder='./checkpoint/', seed=123, start_iter=1, statistics='./statistics/', testBatchSize=1, test_dataset='Set12', threads=4, upscale_factor=1, val_noiseL=25)
===> Loading datasets
===> Building model Deam
---------- Networks architecture -------------
DataParallel(
(module): Deam(
开始运行了,开心,解决了一个小问题
边栏推荐
- Use Emoji to learn common sense of safe Internet access? See the new play of Google
- Few-shot Video-to-Video(NeurIPS 2019)视频生成论文解读
- 视频分析StreamEye Studio
- (Note)CIE色度图
- Understand what configuration center is?
- 【Flutter -- 基础组件】文本组件 Text & TextStyle & TextSpan
- 基于Tensorflow GPU2Ascend工具的TensorFlow网络模型迁移
- 【重识云原生】第四章云网络4.9.4.3节——智能网卡使用场景-网络加速实现
- 体系对于哲学的重要性-黑格尔
- 《运营商数据存力指标》发布,透露了哪些重要趋势?
猜你喜欢
随机推荐
全球位置编号GLN申请攻略
网络 与vpc实验
Windows Server 2022获7月非安全更新:修复因Defender导致的卡死问题
WorkManager的学习四
DeiT:注意力也能蒸馏
Video analysis streameye studio
[go open source treasure] performance tuning skills based on golang syntax (string splicing)
抽丝剥茧C语言(高阶)文件操作+练习
Golang-- operation date
Wallys/3 × 3/2 × 2 MIMO/ 802.11ac/ Mini PCIe /2,4GHz / 5GHz QCA 9880
动作活体检测能力,构建安全可靠的支付级“刷脸”体验
轻松与劳氏Lowe’s 对接 EDI 要准备什么?
What can testers do when there is an online bug?
Moco V3: visual self supervision ushers in transformer
AWD思路
ARM 如果通过笔记本机上外网?
CompleteFuture 并行异步返回处理
xts performance auto fix script
Delegation mechanism of simplified governance of Dao
【重识云原生】第四章云网络4.9.5.1节下一代智能网卡——DPU综述