当前位置:网站首页>Zero dimensional interior ballistic equations of solid rocket motor
Zero dimensional interior ballistic equations of solid rocket motor
2022-07-21 20:46:00 【jedi-knight】
Purpose
For a given charge , The change of burning surface area with meat thickness A b ( e ) {A_{\rm{b}}}\left( e \right) Ab(e) It is known. , It is necessary to calculate the relationship between combustion chamber pressure and time according to this curve p c ( t ) {p_{\rm{c}}}\left( t \right) pc(t)
Continuity equation
1 The flow rate of gas produced by charge combustion
m ˙ 1 = ρ p A b r = a ρ p A b p c n {\dot m_1} = {\rho _{\rm{p}}}{A_{\rm{b}}}r = a{\rho _{\rm{p}}}{A_{\rm{b}}}p_{\rm{c}}^{\rm{n}} m˙1=ρpAbr=aρpAbpcn here ρ p {\rho _{\rm{p}}} ρp Is the density of the charge , r r r Is the linear burning rate , You can use a p c n ap_{\rm{c}}^{\rm{n}} apcn Empirical formula calculation
2 The flow of gas from the nozzle
m ˙ 2 = p c A t c ∗ {\dot m_2} = { { {p_{\rm{c}}}{A_{\rm{t}}}} \over { {c^*}}} m˙2=c∗pcAt In style c ∗ { {c^*}} c∗ Is the characteristic velocity of propellant , A t { {A_{\rm{t}}}} At Is the throat area of the nozzle , It should be noted that , The premise of using this formula is that the nozzle is in the maximum flow state ( Throat speed ), Therefore, it may not be applicable to the engine starting process and shutdown
3 The gas flow accumulated in the combustion chamber
m ˙ 3 = d ( ρ g V f ) d t {\dot m_3} = { { {\rm{d}}\left( { {\rho _{\rm{g}}}{V_{\rm{f}}}} \right)} \over { {\rm{d}}t}} m˙3=dtd(ρgVf) In style V f { {V_{\rm{f}}}} Vf Is the volume of the combustion chamber cavity , ρ g { {\rho _{\rm{g}}}} ρg Is the density of the gas in the combustion chamber , Assume that the temperature and molecular weight of the gas remain unchanged , Bring the complete gas equation of state into , Yes
m ˙ 3 = 1 R T d ( p c V f ) d t = 1 ( c ∗ Γ ) 2 d ( p c V f ) d t {\dot m_3} = {1 \over {RT}}{ { {\rm{d}}\left( { {p_{\rm{c}}}{V_{\rm{f}}}} \right)} \over { {\rm{d}}t}} = {1 \over { { {\left( { {c^*}\Gamma } \right)}^2}}}{ { {\rm{d}}\left( { {p_{\rm{c}}}{V_{\rm{f}}}} \right)} \over { {\rm{d}}t}} m˙3=RT1dtd(pcVf)=(c∗Γ)21dtd(pcVf) In style R R R Is the complete gas constant , T T T It's the gas temperature . In order to avoid directly calculating the gas temperature ( Chemical equilibrium calculation is required , Not easy to use ), So Γ \Gamma Γ function , Use ( c ∗ Γ ) 2 { { {\left( { {c^*}\Gamma } \right)}^2}} (c∗Γ)2 Replace R T {RT} RT, It can be proved that the two are equal
Γ = γ ( 2 γ + 1 ) γ + 1 2 ( γ − 1 ) \Gamma = \sqrt \gamma {\left( { {2 \over {\gamma + 1}}} \right)^{ { {\gamma + 1} \over {2\left( {\gamma - 1} \right)}}}} Γ=γ(γ+12)2(γ−1)γ+1 In style γ \gamma γ Is the specific heat ratio , It can be simply taken as 1.2
So use the derivative formula of the product , Yes
m ˙ 3 = 1 ( c ∗ Γ ) 2 d ( p c V f ) d t = 1 ( c ∗ Γ ) 2 ( p c d V f d t + V f d p c d t ) {\dot m_3} = {1 \over { { {\left( { {c^*}\Gamma } \right)}^2}}}{ { {\rm{d}}\left( { {p_{\rm{c}}}{V_{\rm{f}}}} \right)} \over { {\rm{d}}t}} = {1 \over { { {\left( { {c^*}\Gamma } \right)}^2}}}\left( { {p_{\rm{c}}}{ { {\rm{d}}{V_{\rm{f}}}} \over { {\rm{d}}t}} + {V_{\rm{f}}}{ { {\rm{d}}{p_{\rm{c}}}} \over { {\rm{d}}t}}} \right) m˙3=(c∗Γ)21dtd(pcVf)=(c∗Γ)21(pcdtdVf+Vfdtdpc)
4 Flow balance
m ˙ 1 = m ˙ 2 + m ˙ 3 { {\dot m}_1} = { {\dot m}_2} + { {\dot m}_3} m˙1=m˙2+m˙3 There are
a ρ p A b p c n = p c A t c ∗ + 1 ( c ∗ Γ ) 2 ( p c d V f d t + V f d p c d t ) (1) a{\rho _{\rm{p}}}{A_{\rm{b}}}p_{\rm{c}}^{\rm{n}} = { { {p_{\rm{c}}}{A_{\rm{t}}}} \over { {c^*}}} + {1 \over { { {\left( { {c^*}\Gamma } \right)}^2}}}\left( { {p_{\rm{c}}}{ { {\rm{d}}{V_{\rm{f}}}} \over { {\rm{d}}t}} + {V_{\rm{f}}}{ { {\rm{d}}{p_{\rm{c}}}} \over { {\rm{d}}t}}} \right) \tag{1} aρpAbpcn=c∗pcAt+(c∗Γ)21(pcdtdVf+Vfdtdpc)(1)
Burning surface displacement equation
Burning will cause the burning surface to move , Yes
d e d t = a p c n (2) { { {\rm{d}}e} \over { {\rm{d}}t}} = ap_{\rm{c}}^{\rm{n}} \tag{2} dtde=apcn(2) Combustion will also cause the volume of the combustion chamber cavity to expand , Yes
d V f d e = A b { { {\rm{d}}{V_{\rm{f}}}} \over { {\rm{d}}e}} = {A_{\rm{b}}} dedVf=Ab Combine these two formulas , It's not hard to get
d V f d t = A b a p c n (3) { { {\rm{d}}{V_{\rm{f}}}} \over { {\rm{d}}t}} = {A_{\rm{b}}}ap_{\rm{c}}^{\rm{n}} \tag{3} dtdVf=Abapcn(3)
The final set of differential equations
Will type ( 3 ) (3) (3) Plug in ( 1 ) (1) (1) It can be reduced to
a ρ p A b p c n = p c A t c ∗ + 1 ( c ∗ Γ ) 2 ( A b a p c n + 1 + V f d p c d t ) (4) a{\rho _{\rm{p}}}{A_{\rm{b}}}p_{\rm{c}}^{\rm{n}} = { { {p_{\rm{c}}}{A_{\rm{t}}}} \over { {c^*}}} + {1 \over { { {\left( { {c^*}\Gamma } \right)}^2}}}\left( { {A_{\rm{b}}}ap_{\rm{c}}^{ {\rm{n + 1}}} + {V_{\rm{f}}}{ { {\rm{d}}{p_{\rm{c}}}} \over { {\rm{d}}t}}} \right) \tag{4} aρpAbpcn=c∗pcAt+(c∗Γ)21(Abapcn+1+Vfdtdpc)(4) Will type ( 2 ) ( 3 ) ( 4 ) (2)(3)(4) (2)(3)(4) After finishing , Write them together to get the final set of differential equations
d p c d t = ( c ∗ Γ ) 2 V f ( a ρ p A b p c n − p c A t c ∗ ) − A b a p c n + 1 V f { { { {\rm{d}}{p_{\rm{c}}}} \over { {\rm{d}}t}} = { { { {\left( { {c^*}\Gamma } \right)}^2}} \over { {V_{\rm{f}}}}}\left( {a{\rho _{\rm{p}}}{A_{\rm{b}}}p_{\rm{c}}^{\rm{n}} - { { {p_{\rm{c}}}{A_{\rm{t}}}} \over { {c^*}}}} \right) - { { {A_{\rm{b}}}ap_{\rm{c}}^{ {\rm{n + 1}}}} \over { {V_{\rm{f}}}}}} dtdpc=Vf(c∗Γ)2(aρpAbpcn−c∗pcAt)−VfAbapcn+1 d V f d t = A b a p c n { { { {\rm{d}}{V_{\rm{f}}}} \over { {\rm{d}}t}} = {A_{\rm{b}}}ap_{\rm{c}}^{\rm{n}}} dtdVf=Abapcn d e d t = a p c n { { { {\rm{d}}e} \over { {\rm{d}}t}} = ap_{\rm{c}}^{\rm{n}}} dtde=apcn Given Initial conditions after , Numerical calculation method can be used to solve
边栏推荐
猜你喜欢
数组去重的简单方法(不含引用类型)
The feeling of an elegant "interview"
推薦一個好用的 所見即所得的 markdown 編輯器 Mark Text
uni-app 新建报错 Cannot read property mode of undefined
JSP tag 02
OpenFoam中的VOF相变方程
微信小程序request:fail -2:net::ERR_FAILED
推荐一个好用的 所见即所得的 markdown 编辑器 Mark Text
User defined MVC addition, deletion, modification and query
npm相关资料
随机推荐
thinkphp5.1 利用 PHPMailer 发送邮件
数组去重的简单方法(不含引用类型)
$. Usage of each
Recommander un éditeur de markdown facile à utiliser Mark Text
边界层积分方程与马兰格尼效应
Using tailwind on Google browser, the button will have a blue background
Wechat applet request:fail -2:net:: err_ FAILED
自定义MVC原理
User defined MVC addition, deletion, modification and query
Image upload
swift 导航栏颜色设备和去掉下边缘线
移动安全入门指南
Crud of MySQL
Mise en œuvre personnalisée du cadre MVC
Simple method of array de duplication (excluding reference type)
Upload pictures and avatars
Nodejs等待一段时间
JS operation mechanism
OpenFoam小技巧
Nodemon +nodejs + Express file modification automatically restarts the server