当前位置:网站首页>线性薛定谔方程实现界面推移
线性薛定谔方程实现界面推移
2022-07-21 05:07:00 【jedi-knight】
线性薛定谔方程实现界面推移
考虑如下线性薛定谔方程
r 2 α 2 ∇ 2 T − T = 0 {r^2}{\alpha ^2}{\nabla ^2}T - T = 0 r2α2∇2T−T=0式中 r r r是界面推移的速率,单位 m / s {\rm{m/s}} m/s。 α \alpha α是扩散项系数,单位为 s { {\rm{s}}} s。 T T T是无量纲温度,单位为1
令
T = e − τ α T = {e^{ - {\tau \over \alpha }}} T=e−ατ式中 τ \tau τ是时间场。代入线性薛定谔方程中有
r 2 α 2 ∇ 2 e − τ α − e − τ α = 0 {r^2}{\alpha ^2}{\nabla ^2}{e^{ - {\tau \over \alpha }}} - {e^{ - {\tau \over \alpha }}} = 0 r2α2∇2e−ατ−e−ατ=0 r 2 α 2 ∇ ⋅ ( − 1 α e − τ α ∇ τ ) − e − τ α = 0 {r^2}{\alpha ^2}\nabla \cdot \left( { - {1 \over \alpha }{e^{ - {\tau \over \alpha }}}\nabla \tau } \right) - {e^{ - {\tau \over \alpha }}} = 0 r2α2∇⋅(−α1e−ατ∇τ)−e−ατ=0 r 2 α 2 ( 1 α 2 e − τ α ∣ ∇ τ ∣ 2 − 1 α e − τ α ∇ 2 τ ) − e − τ α = 0 {r^2}{\alpha ^2}\left( { {1 \over { {\alpha ^2}}}{e^{ - {\tau \over \alpha }}}{ {\left| {\nabla \tau } \right|}^2} - {1 \over \alpha }{e^{ - {\tau \over \alpha }}}{\nabla ^2}\tau } \right) - {e^{ - {\tau \over \alpha }}} = 0 r2α2(α21e−ατ∣∇τ∣2−α1e−ατ∇2τ)−e−ατ=0 e − τ α ( r 2 ∣ ∇ τ ∣ 2 − r 2 α ∇ 2 τ − 1 ) = 0 {e^{ - {\tau \over \alpha }}}\left( { {r^2}{ {\left| {\nabla \tau } \right|}^2} - {r^2}\alpha {\nabla ^2}\tau - 1} \right) = 0 e−ατ(r2∣∇τ∣2−r2α∇2τ−1)=0 ∣ ∇ τ ∣ 2 − α ∇ 2 τ − 1 r 2 = 0 {\left| {\nabla \tau } \right|^2} - \alpha {\nabla ^2}\tau - {1 \over { {r^2}}} = 0 ∣∇τ∣2−α∇2τ−r21=0 ∣ ∇ τ ∣ 2 − 1 r 2 = α ∇ 2 τ {\left| {\nabla \tau } \right|^2} - {1 \over { {r^2}}} = \alpha {\nabla ^2}\tau ∣∇τ∣2−r21=α∇2τ
可见求解了线性薛定谔方程就等价地求解了程函方程,也就获得了界面推移的结果。
τ = − α ln T \tau = - \alpha \ln T τ=−αlnT
参考自Numerical Solving a Boundary Value Problem for the Eikonal Equation
求解案例
一个正方形可燃烧区域,左侧为高燃速材料,右侧为低燃速材料。上边界、左边界和下边界被点燃,右边界不燃烧。
以下是燃速分布
以下是无量纲温度分布
以下是点燃时间场分布
此方法虽然简单(只用使用有限元法求解一个对称线性方程组),但是界面间的精度还需进一步验证
openFoam实现https://gitee.com/jedi-knight/sef-foam
边栏推荐
- C. Doremy‘s IQ
- 自定義MVC框架實現
- 14. [string function Chapter 1]
- [C language] choose and cycle to interpret romantic source code
- uniapp 下拉刷新、上拉加载更多、最常见的节流场景
- 鼠标禁用样式(cursor: not-allowed)无效和鼠标禁用事件(pointer-events: none)冲突
- 专栏开设的意义
- C language to achieve three chess games - pattern open version(
- js动态实现倒计时功能
- TypeScript中的as unknown as xxx的用法及目的
猜你喜欢
MySQL之函数
[C language] 0.5 times the speed to explain the interesting C language playing methods of the century war
Solve the problem that Safari browser blocks window open
Common formula for matrix derivation (avoiding pit) + derivation of matrix modulus and absolute value
[c language] selecting the loop can also play the code like this to show the country of light
利用vscode插件 coderunner 编译运行 typescript,当输出有中文的时候,出现乱码
推薦一個好用的 所見即所得的 markdown 編輯器 Mark Text
数组去重的简单方法(不含引用类型)
xcode升级后找不到 C语言头文件 stdio.h的解决办法
Acwing 175 circuit maintenance
随机推荐
JS operation mechanism
Detailed derivation of Differential Flatness of UAV
flutter 报错记录:navigator.dart‘: Failed assertion: line 4041 pos 12: ‘!_debugLocked‘: is not true.
Acwing 175 circuit maintenance
xml解析
Solve the problem that Safari browser blocks window open
Global variable configuration dev . dev.dev . dev.test
自定義MVC框架實現
Format time
The content of vant toast has been overwritten by the first trigger
Available parameters are [list]批量上传时错误
Cannot read property mode of undefined
uniapp自定义导航栏按钮及按钮点击事件
Add, delete, modify and check~
js动态实现倒计时功能
JS to realize horizontal and vertical screen switching of monitoring mobile terminal
Latex: derivative related symbols
image 多图片页面的优化方式
Common formula for matrix derivation (avoiding pit) + derivation of matrix modulus and absolute value
SimpleDateFormat正确使用