当前位置:网站首页>Regression - logical regression
Regression - logical regression
2022-07-20 07:43:00 【Lu 727】
1、 effect
Logistic regression is a multivariable analysis method to study the relationship between binary dependent variable view and some influencing factors . But if the dependent variable is of multiple categories , Then we need to use multi classification logistic regression to study the relationship between dependent variables and some influencing factors .
2、 Input / output description
Input : The dependent variable Y For classification variables , The independent variables X It is at least one quantitative variable or categorical variable .
Output : The effect evaluation of logistic regression coefficient estimation and classification prediction .
3、 Case example
According to age 、 Monthly income 、 Gender 、 Family population and other influencing factors ( The independent variables ) To study the means of transportation for wage earners to and from work is bus and subway 、 Bicycle 、 Or a private car ( The dependent variable )
4、 Modeling steps
For dichotomies ,
in consideration of The values are continuous , So it cannot fit discrete variables . We can consider using it to fit the conditional probability
, Because the value of probability is continuous .
Ideally, the unit step function , But this step function is not differentiable , The logarithmic probability function is a commonly used alternative function :
The above formula can be converted into :
among , y As x The probability of a positive example , 1-y by x The probability of its counterexample . The ratio of the two is called probability (odds). therefore , In fact, the value of dependent variable in logistic regression should be odds.
take y As a kind of posterior probability estimation , The rewriting formula has :
For multi classification logistic regression , By default, a certain class is compared with the remaining classes as a binary classification problem ,N There are three categories for N-1 Subcategory , obtain N-1 A binary model , Find out the corresponding probability of each two categories , The category with the highest probability is the prediction result of the new sample .
边栏推荐
- Wechat payment apiv3 unified callback interface encapsulation (H5, jsapi, H5, app, applet)
- 非程序员也可以用上 pipe 么
- C# 特性的使用
- nodejs相关问题汇总(上)
- static 关键字......
- AR美妆平台YouCam支持男性胡须实时预览
- 使用Flutter开发App的一种组合思路(小程序+App)
- Hough based image segmentation matlab
- 微信支付APIV3统一支付接口(H5、JSAPI、H5、App、小程序)
- YOLOV7:AttributeError: module ‘distutils‘ has no attribute ‘version‘ 的解决方案
猜你喜欢
[DDD] Domain Driven Design 1 DP
Spingboot+quartrz cluster version to achieve dynamic timing tasks (using reflection to achieve custom services)
如何识别全部单号快递公司查询每个单号物流
Summary and review of introduction to database system
Seata四大模式之XA模式详解及代码实现
Hough based image segmentation matlab
微信支付APIV3统一回调接口封装(H5、JSAPI、H5、App、小程序)
Finite element method for seepage problems in geotechnical engineering: theory, modular programming implementation, hands-on application of open source programs
重要通知 生态环境部印发《关于做好2022年企业温室气体排放报告管理相关重点工作的通知》
2022G2电站锅炉司炉判断题及答案
随机推荐
Variations of B tree in "inside database system"
【转】pyhton中__pycache__文件夹的产生与作用
Yolov7:attributeerror: solution of module 'distutils' has no attribute' version '
突然发现一款优化神器
Unity-获得正在播放的动画
[C language] dynamic memory management
After bookkeeping, export the accounts of this month to generate tables
岩土工程渗流问题之有限单元法:理论、模块化编程实现、开源程序手把手实操应用
基于弱伪监督的去相关子领域自适应框架用于跨域土地利用分类
What should the embedded R & D industry do about source code confidentiality
基于PyTorch机器学习与深度学习实践应用与案例分析
Wechat payment apiv3 unified payment interface (H5, jsapi, H5, app, applet)
[1. IELTS Listening] boost listening new words in each unit of listening
Watch for free: video courses on technology application based on Remote Sensing (deep learning, gee, hyperspectral, long time series, UAV, etc.)
如何识别全部单号快递公司查询每个单号物流
梅科尔工作室-华为14天鸿蒙设备开发实战笔记三
2022G2电站锅炉司炉判断题及答案
What is distributed transaction (Cap principle, base theory, 2pc | 3pc protocol, Xa | at mode, etc.)
搭建本地以图搜图服务
200元一把的电吹风,只用了一个星期,就做到200万?